Errata

Nucleoside transport inhibitors, dipyridamole and *p*-nitrobenzylthioinosine, selectively potentiate the antitumor activity of NB1011

Christopher R Boyer,¹ Patricia L Karjian,¹ Geoffrey M Wahl,² Mark Pegram³ and Saskia TC Neuteboom¹

¹NewBiotics, Inc, San Diego, CA 92121, USA. ²The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ³UCLA School of Medicine, Los Angeles, CA 90095, USA.

The second and third sentences in the Results section of this article¹ should read:

The median-effect/combination index method by Chou and Talalay was used to calculate CI values. CI values <1 indicate synergy, CI=1 indicates additivity and CI>1 indicates antagonism

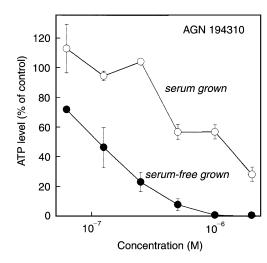
Reference

1. Boyer RB, Karjian PL, Wahl GM, Pegram M, Neuteboom STC. Nucleoside transport inhibitors, dipyridamole and *p*-nitrobenzylthioinosine, selectively potentiate the antitumor activity of NB1011. *Anti-Cancer Drugs* 2002; **13**: 29–36.

The prospects of retinoids in the treatment of prostate cancer

Lisette A Hammond,¹ Geoffrey Brown,² Richard G Keedwell,² Jennifer Durham² and Roshantha AS Chandraratna³

Divisions of ¹Cancer Studies, and ²Immunity and Infection, University of Birmingham Medical School, Edgbaston, Birmingham B15 2TT, UK. ³Retinoid Research, Departments of Chemistry and Biology, Allergan Inc, Irvine, CA 92623-9534, USA.


The following corrections to this article¹ should be noted:

The left-hand panel of Figure 3 should include the symbols for the 2 μ M results as indicated.

A revised Table 1 showing the correct receptor specificities is given overleaf.

Reference

1. Hammond LA, Brown G, Keedwell RG, Durham J, Chandraratna RAS. The prospects of retinoids in the treatment of prostate cancer. *Anti-Cancer Drugs* 2002; **13**: 781–90.

Figure 3. Antagonists are more effective against serum-free grown than serum grown prostate cancer cells.

Anti-Cancer Drugs · Vol 13 · 2002 1077

ISSN 0959-4973 © 2002 Lippincott Williams & Wilkins

Errata

Table 1. Novel retinoid analogs, and their receptor binding and transactivation properties [see origial article for structures]

Compound no. (AGN)	Receptor specificity ^a	PARα		$PAR\beta$		PARγ	
		K_d^b (nM)	EC ₅₀ ^c (nM)	K_d^b (nM)	EC ₅₀ ^c (nM)	K_d^b (nM)	EC ₅₀ ^c (nM)
194078	RAR agonist	4	140	>5000	WA ^d	>5000	NA ^d
195153	RARα agonist	40	130	>5000	WA ^d	>5000	WA ^a
190299 194310	RAR $\beta\gamma$ agonist RAR $\alpha\beta\gamma$ antagonist	616 3	> 1000 NA ^d	41 2	18 NA ^d	57 5	42 NA ^d
193109	$RAR\alpha\beta\gamma$ antagonist	2	NA ^d	2	NA ^d	3	NA ^d
194301	RARα antagonist	3	NA ^d	320	NA ^d	7250	NA ^d
194431	RAR $\beta\gamma$ antagonist	300	NA^d	6	NA ^d	70	NA^d

^aNone of the compounds bound to ($K_{\rm d}$ values > 10 μ M) or activated any of the RXR subtypes.

^bReceptor binding was determined with full-length, baculovirus-expressed receptors in competitive binding assays using radiolabeled ligands.

^cFunctional activity of the compounds was determined in CV-1 cells transiently transfected with an appropriate RAR/RXR- or RXR/RXR-responsive reporter gene together with an expression vector for a specific receptor subtype.

^dAbbreviations: NA, inactive; WA, weak partial agonist.